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ABSTRACT. The relative llfetlmes of singlet molecular oxygen have been 

evaluated, as a function of solvent and deuterlum substltutlon, via 
measurement lnvolvlng the direct emission of singlet oxygen at 1.27 urn. 

INTRODUCTION. An accurate value of the llfetlme of slnglet molecular oxygen ('Ag) In solution 

1s of paramount Importance In the evaluation of the rate constants for reaction of this impor- 

tant reactive IntermedIate. Although data In the literature show general agreement for the 

llfetlme of singlet molecular oxygen In solvents for which the inherent lIfetime appears to 

be less than about 100 us, 
1 

there 1s considerable disagreement 2,3 with respect to the reported 

values of the lifetime of singlet oxygen In solvents such as CC14, CDC13, C6D5CD3 FOr example, 

IndIrect chemical methods for lifetime determlnatlon have generally led to shorter llfetlmes 

than methods based on direct analysis of the decay of the emlsslon of singlet oxygen at 1.27 urn. 

Recently, Foote* reported rather large effects on solvent deuteratlon which imply longer life- 

times than previously reported m solvents such as CDC13, C6D6, CD3CN, and (CD3)2C0. Lifetimes 

approaching tens of ms have now been reported In certain solvents. The calculated radlatlve 

llfetlme of slnglet oxygen In the vapor phase5 ImplIes an unreasonably low quantum yield 

(<lo+) for emission from singlet oxygen m solution. However, the recently estimated value of 

4 s m Ccl4 6 based on an absolute quantum yield of 4 x 10 
-3 

removes this dllennna. Evidently, 

solvent colllslons induce a much shorter inherent radiative llfetlme for slnglet oxygen m 

solution. However no slgnlflasnt varlatlon of the radlatlve llfetlme in different solvents has 

been found.6 

We report here an lnvestlgatlon of the emlsslon of singlet oxygen (1 27 pm) In a variety 

of orgalc solvents with the 1ntentlOn of determlnlng by a direct spectroscopic method the 

relative lifetimes of singlet oxygen In these solvents The basis of the method 1s to start 

with a solvent in which the lifetime of singlet oxygen 1s very long and then to determIne the 

slnglet oxygen llfetlmes as a function of added cosolvent. 

RESULTS AND DISCUSSION. The steady state method7 used in this work yields relative llfetlmes of 

singlet oxygen. Typically, a 10 
-5 

M stirred solution of a sensltlzer (7H-benz[de]anthracen-7- 

one, phenalenone or fluorenone, Scheme I) In Ccl4 was irradiated at 366 nm and the steady state 

7H-Benz[delanthracen-7-one Phenalenone 

(2, (&) 

Scheme I Sensitizers Employed m this Study 
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Fluorenone 

(2) 
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emrssron (1o) at 1.27 Rm was recorded Addrtlon of portrons (x, m fractrons of the total 

volume) of a drfferent solvent caused an enosslon slgnal decrease It was found that after 

correctron for O.D. changes, the Stern-Volmer kinetic law (Eqn. 1) was followed over the range 

rnvestlgated (up to 20% mixtures, typrcal plot shown In Frgure 1). 

IO/I = 8x + 1 where 8 = r 
CCl.'rsolvent 

(1) 
4 

The behavror of singlet oxygen 111 benzene was employed as a standard because m thus 

solvent, the values reported for srnglet oxygen lrfetrmes m the lrterature 
8 

differ only wlthrn 

the error limits (25 + 3 us) Eqn. 2 was employed to determrne the values grven rn Table 1. 

'='IC6H6 S6 (8, H 'Ssolvent) (2) 

For rnvestiqatron of solvents 111 whrch singlet oxygen exhrblts long lrfetrmes (> 1 ms), 

a modrfred method was used, e.g., a small portion of a concentrated solutron of the sensrtrzer 

rn CC1 4, typrcally 10 ).11, was drluted by 2.0 ml of a neat solvent and the correspondrng emrssron 

signals were recorded. The results presented m Table 2 are relative quantum yrelds, and refer 

to the emrssron rntensrty obtalned from a CC14 solutron which was checked frequently rn order 

to establrsh that fluctuations In the excltrng lrght rntensrty, temperature of the probe and 

detector response were below the actual accuracy of the emlssron rntensrty determlnatron. 

The chorce of the sensltrxers used m this rnvestrgatlon was drctated by the experrmental 

condrtrons of thus work, whrch requrre hrgh srnglet oxygen concentratrons 
9 

In the absence of 

quencher, numerous "well establrshed" sensltrzers for srnglet oxygen generatron such as Rose 

Bengal, Methylene Blue, and anthracene, for example, raprdly react, whereas benxophenone and 

benzophenone derrvatrves (although stable under the above condrtrons) produce a consrderably 

lower emrsslon srgnals compared to the sensltrzers used In thus rnvestrgatron. 

As the lrfetlme of a reactive rntermedrate such as srnglet oxygen gets longer and longer, 

the measured experrmental llfetrme becomes crrtrcally dependent on the precrse experrmental 

condrtrons. For example, manor "impurrtles", whrch play no srgnlfrcant role rn determrnlng 

the llfetrme when solvent deactrvatron 1s fast, can become lrfetrme controllrng Thus, the 

ground state of the sensltrzer used to produce slnglet oxygen, long-lived exerted states or 

products derived from photoexcrtatlon of the sensrtrzer, ground state trrplet oxygen and sing- 

let oxygen rtself may become "rmpurrtres" that determrne the measured llfetrme. In sprte of 

these technrcal problems, we belleve that our method valrdly measures solvent propertres rather 

than rmpurrty propertres because no change of the emrssron srgnal wrth trme 1s observed) 
1c 

l-4 

secondly, the llfetlmes obtarned In thus work are consrderably longer than previously reported: 

and furthermore, the lrght rntensrty employed 
13 

yielded, at the low sensrtrser concentratrons 

used in this study (Q 10 
-5 

M),steady state srnglet oxygen concentratrons which have been esta- 

blushed by trme resolved measurements 
14 

to Ire well below the lrmlt at whrch srnglet oxygen rs 

deactrvated by bimolecular mechanrsms. 

Several theories have been presented to ratronallze the different lrfetrmes Of slnglet 

oxygen m varrous solvents. 
Ec,ll,lS~ uenchrng of srnglet oxygen by organrc solvents 1s much less 

efflcrent than the speclflc quenchrng by chemrcal or physrcal quenchers (Table 1) 
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Table 1. Lifetimes and Deuterlum Effects of Singlet Oxygen ln Organic Solvents. 

Solvent(a) LIfetime 'c (us) kg m CC14 (M-'S-') 
=D"IH Lit. (D/H) 

H D H D 

Chloroform 160 + 6 3600 5150 500 
+ 
20 22 + 1 22.5 + 

1 10 1 
4 

- - - + 

Methylenechlorlde 59 + 6 120 510 1100 + 100 530 40 2.0 .5 ---- - - + + 
Acetone 39 + 1 770 - + 100 1880 + 50 95 512 19.7 

+ 3 18 + 2 
4 

Acetonltrile 58 + 3 950 
2 

70 900 
+ 

50 55 + 4 
16.4 + 2 8+1 

4 

25(5;) 
- - 

Benzene 680 + 30 3600 
+ 

300 131 + 6 27.2 1 
- + 

16 4 
+ 1 

Toluene 27 + 2 310 - + 20 3900 + 300 340 + 20 ll5+1 11 + 1.5 3 

Cyclohexane 17 + 2 320 + 30 6350 5 800 340 + 30 18.1 3 + ---- 

(a) Air saturated at 25OC. (b) Literature' value, taken as reference. 

Table 2. Lifetimes of SInglet Oxygen ~TL Halogenated Orgsnlc Solvents. 

Solvent(a) Qcc14/8 T (ms) Lit. (ms) 

cc14 1 31 + Ztb) 26 + 1 2 

CC12FCClF2 74+ - 1 42 - + 4 2.3 ' 

C6F6 3.3 + .2 9.4 - + .3 .59 IL 

(C2F5)20 28 + 3 1.1 - + .l --_ 

(a) Air saturated at 25°C; (b) Referred to llfetlme m benzene. 

4c 

3c 

20 

10 

0 
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Figure 1. Slnglet Oxygen ~lssion (1.27 ~mn) 111 Ccl4 Quenched by CHc13. 
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Although this partial correlation 
11.15a 

1s lntrlgulng and somewhat puzzling, rt suggests that 

an electronic to vlbronlc coupled transltron 1s Involved In the quenching mechanism of slnglet 

oxygen for rate constants k < 10 4 s-l. 
q 
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